

Complex Symmetry of Composition Operators

S. Waleed Noor*

*ICMC, University of São Paulo, Brazil E-mail address: waleed math@hotmail:com

Resumo

A bounded operator T on a complex separable Hilbert space \mathcal{H} is said to be *complex symmetric* if there exists an orthonormal basis for \mathcal{H} with respect to which T has a self-transpose matrix representation. An equivalent way to define complex symmetry is the following: if a *conjugation* is a conjugate-linear operator C: $\mathcal{H} \to \mathcal{H}$ that satisfies the conditions

- (a) C is isometric: $\langle Cf, Cg \rangle = \langle g, f \rangle \, \forall f, g \in \mathcal{H},$
- (b) C is involutive: $C^2 = I$,

then we say that T is complex symmetric if there exists a conjugation C such that $T = CT^*C$. Suppose $H^2(\mathbb{B}_n)$ is the classical Hardy space of analytic functions on the unit ball $\mathbb{B}_n \subset \mathbb{C}^n$ and define the composition operator C_{ψ} on $H^2(\mathbb{B}_n)$ by $C_{\psi}f = f \circ \psi$, where ψ is an analytic self-map of \mathbb{B}_n . In this presentation, a solution is given to problem posed by Stephan Ramon Garcia and Christopher Hammond [1]: If φ is an involutive Moebius automorphism of \mathbb{B}_n , find a conjugation operator \mathcal{J} on $H^2(\mathbb{B}_n)$ such that $C_{\varphi} = \mathcal{J}C^*_{\varphi}\mathcal{J}$.

Referências

- S. R. Garcia and C. Hammond, Which weighted composition operators are complex symmetric? Operator Theory: Advances and Applications 236 (2014), 171-179.
- S. Waleed Noor, Complex symmetry of composition operators induced by involutive ball automorphisms, Proc. Amer. Math. Soc. 142 (2014), no. 9, 3103-3107.